Micro-contamination on an Eyeglass Lens

Sample
An eyeglass lens with small particles of contamination embedded in a polysiloxane coating

Industry
Optical/coatings

Technique
ATR Microscopy

Applicable PerkinElmer instruments
Multiscope™ Microscope and Spectrum™ Spotlight™ FT-IR Systems fitted with an Si ATR Objective accessory

www.perkinelmer.com
Discussion of results

One of the final stages of eyeglass lens preparation is the coating of the lens with a protective polysiloxane coating. In this case, small particles of contamination were observed after this coating process. Determination of the identity of these particles necessitated the use of an infrared microscope. Rather than attempting to “dig-out” particles from under the polysiloxane coating, attenuated total reflectance (ATR) microscopy was employed for in-situ analysis. The use of a Silicon (Si) ATR crystal provided optimum depth of penetration through the coating and into the contamination. The resulting spectrum was a mixture of the contamination and the polysiloxane coating. Spectral subtraction using a polysiloxane reference yielded a spectrum of the contamination which could be searched against a spectral library. The contamination was found to be a polyamide which is most likely to be synthetically-based.

![Visible image of eyeglass coating showing imperfection.](image1)

Figure 1. Visible image of eyeglass coating showing imperfection.

![Overlaid ATR microspectra of coating and contamination (top) and pure coating (bottom).](image2)

Figure 2. Overlaid ATR microspectra of coating and contamination (top) and pure coating (bottom).

![Difference spectrum (top) and library search match (bottom) indicating polyamide contamination.](image3)

Figure 3. Difference spectrum (top) and library search match (bottom) indicating polyamide contamination.